Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Cardiovasc Med ; 9: 871603, 2022.
Article in English | MEDLINE | ID: covidwho-1952281

ABSTRACT

Aims: Persistent cardiac symptoms are an increasingly reported phenomenon following COVID-19. However, the underlying cause of cardiac symptoms is unknown. This study aimed to identify the underlying causes, if any, of these symptoms 1 year following acute COVID-19 infection. Methods and Results: 22 individuals with persistent cardiac symptoms were prospectively investigated using echocardiography, cardiovascular magnetic resonance (CMR), 6-min walking test, cardio-pulmonary exercise testing and electrocardiography. A median of 382 days (IQR 368, 442) passed between diagnosis of COVID-19 and investigation. As a cohort their echocardiography, CMR, 6-min walking test and exercise testing results were within the normal ranges. There were no differences in left ventricular ejection fraction (61.45 ± 6.59 %), global longitudinal strain (19.80 ± 3.12 %) or tricuspid annular plane systolic excursion (24.96 ± 5.55 mm) as measured by echocardiography compared to a healthy control group. VO2 max (2045.00 ± 658.40 ml/min), % expected VO2 max (114.80 ± 23.08 %) and 6-minute distance walked (608.90 ± 54.51 m) exceeded that expected for the patient cohort, whilst Troponin I (5.59 ± 6.59 ng/l) and Nt-proBNP (88.18 ± 54.27 ng/l) were normal. Conclusion: Among a cohort of 22 patients with self-reported persistent cardiac symptoms, we identified no underlying cardiac disease or reduced cardiopulmonary fitness 1 year following COVID-19.

2.
Thorax ; 76(4): 370-379, 2021 04.
Article in English | MEDLINE | ID: covidwho-1388537

ABSTRACT

OBJECTIVE: To examine the impact of ACE inhibitor (ACE-I)/angiotensin receptor blocker (ARB) use on rate of SARS-CoV-2 infection and adverse outcomes. METHODS: This nationwide case-control and cohort study included all individuals in Denmark tested for SARS-CoV-2 RNA with PCR from 27 February 2020 to 26 July 2020. We estimated confounder-adjusted ORs for a positive test among all SARS-CoV-2 tested, and inverse probability of treatment weighted 30-day risk and risk ratios (RRs) of hospitalisation, intensive care unit (ICU) admission and mortality comparing current ACE-I/ARB use with calcium channel blocker (CCB) use and with non-use. RESULTS: The study included 13 501 SARS-CoV-2 PCR-positive and 1 088 695 PCR-negative individuals. Users of ACE-I/ARB had a marginally increased rate of a positive PCR when compared with CCB users (aOR 1.17, 95% CI 1.00 to 1.37), but not when compared with non-users (aOR 1.00 95% CI 0.92 to 1.09).Among PCR-positive individuals, 1466 (11%) were ACE-I/ARB users. The weighted risk of hospitalisation was 36.5% in ACE-I/ARB users and 43.3% in CCB users (RR 0.84, 95% CI 0.70 to 1.02). The risk of ICU admission was 6.3% in ACE-I/ARB users and 5.4% in CCB users (RR 1.17, 95% CI 0.64 to 2.16), while the 30-day mortality was 12.3% in ACE-I/ARB users and 13.9% in CCB users (RR 0.89, 95% CI 0.61 to 1.30). The associations were similar when ACE-I/ARB users were compared with non-users. CONCLUSIONS: ACE-I/ARB use was associated neither with a consistently increased rate nor with adverse outcomes of SARS-CoV-2 infection. Our findings support the current recommendation of continuing use of ACE-Is/ARBs during the SARS-CoV-2 pandemic. TRIAL REGISTRATION NUMBER: EUPAS34887.


Subject(s)
Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , COVID-19 Drug Treatment , Pandemics , Population Surveillance , SARS-CoV-2 , Adult , COVID-19/epidemiology , Case-Control Studies , Denmark/epidemiology , Female , Humans , Intensive Care Units , Male , Middle Aged
3.
Cardiovasc Res ; 117(10): 2148-2160, 2021 08 29.
Article in English | MEDLINE | ID: covidwho-1266112

ABSTRACT

The pandemic of coronavirus disease (COVID)-19 is a global threat, causing high mortality, especially in the elderly. The main symptoms and the primary cause of death are related to interstitial pneumonia. Viral entry also into myocardial cells mainly via the angiotensin converting enzyme type 2 (ACE2) receptor and excessive production of pro-inflammatory cytokines, however, also make the heart susceptible to injury. In addition to the immediate damage caused by the acute inflammatory response, the heart may also suffer from long-term consequences of COVID-19, potentially causing a post-pandemic increase in cardiac complications. Although the main cause of cardiac damage in COVID-19 remains coagulopathy with micro- (and to a lesser extent macro-) vascular occlusion, open questions remain about other possible modalities of cardiac dysfunction, such as direct infection of myocardial cells, effects of cytokines storm, and mechanisms related to enhanced coagulopathy. In this opinion paper, we focus on these lesser appreciated possibilities and propose experimental approaches that could provide a more comprehensive understanding of the cellular and molecular bases of cardiac injury in COVID-19 patients. We first discuss approaches to characterize cardiac damage caused by possible direct viral infection of cardiac cells, followed by formulating hypotheses on how to reproduce and investigate the hyperinflammatory and pro-thrombotic conditions observed in the heart of COVID-19 patients using experimental in vitro systems. Finally, we elaborate on strategies to discover novel pathology biomarkers using omics platforms.


Subject(s)
COVID-19/virology , Heart Diseases/virology , Heart/virology , Myocytes, Cardiac/virology , SARS-CoV-2/pathogenicity , Animals , Biomarkers/metabolism , Blood Coagulation , COVID-19/complications , Fibrosis , Heart/physiopathology , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Host-Pathogen Interactions , Humans , Inflammation Mediators/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL